Files
libfprint/libfprint/drivers/aes2501.c
Daniel Drake ba24c0884a Rework some image handling; add public binarization API
I want to offer the ability for an application to view a binarized
version of a scanned print. This lead onto a few changes:

 1. Store minutiae and binarized data inside fp_img
 2. Move resize code to the capture path, it previously happened much
    later.
 3. Add fp_img_binarize() to return a new image in binarized form.
 4. Add a BINARIZED_FORM flag to prevent an image being binarized again.

In future, it would be nice to be able to binarize without detecting
minutiae, but this involves some work on the NBIS interaction.
2007-11-17 12:51:28 +00:00

659 lines
17 KiB
C

/*
* AuthenTec AES2501 driver for libfprint
* Copyright (C) 2007 Daniel Drake <dsd@gentoo.org>
* Copyright (C) 2007 Cyrille Bagard
* Copyright (C) 2007 Vasily Khoruzhick
*
* Based on code from http://home.gna.org/aes2501, relicensed with permission
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define FP_COMPONENT "aes2501"
#include <errno.h>
#include <string.h>
#include <usb.h>
#include <fp_internal.h>
#include "aes2501.h"
/* FIXME these need checking */
#define EP_IN (1 | USB_ENDPOINT_IN)
#define EP_OUT (2 | USB_ENDPOINT_OUT)
#define BULK_TIMEOUT 4000
#define MAX_REGWRITES_PER_REQUEST 16
/*
* The AES2501 is an imaging device using a swipe-type sensor. It samples
* the finger at preprogrammed intervals, sending a 192x16 frame to the
* computer.
* Unless the user is scanning their finger unreasonably fast, the frames
* *will* overlap. The implementation below detects this overlap and produces
* a contiguous image as the end result.
* The fact that the user determines the length of the swipe (and hence the
* number of useful frames) and also the fact that overlap varies means that
* images returned from this driver vary in height.
*/
#define FRAME_WIDTH 192
#define FRAME_HEIGHT 16
#define FRAME_SIZE (FRAME_WIDTH * FRAME_HEIGHT)
/* maximum number of frames to read during a scan */
/* FIXME reduce substantially */
#define MAX_FRAMES 150
struct aes2501_regwrite {
unsigned char reg;
unsigned char value;
};
static int do_write_regv(struct fp_img_dev *dev, struct aes2501_regwrite *regs,
unsigned int num)
{
size_t alloc_size = num * 2;
unsigned char *data = g_malloc(alloc_size);
unsigned int i;
size_t offset = 0;
int r;
for (i = 0; i < num; i++) {
data[offset++] = regs[i].reg;
data[offset++] = regs[i].value;
}
r = usb_bulk_write(dev->udev, EP_OUT, data, alloc_size, BULK_TIMEOUT);
g_free(data);
if (r < 0) {
fp_err("bulk write error %d", r);
return r;
} else if (r < alloc_size) {
fp_err("unexpected short write %d/%d", r, alloc_size);
return -EIO;
}
return 0;
}
static int write_regv(struct fp_img_dev *dev, struct aes2501_regwrite *regs,
unsigned int num)
{
unsigned int i;
int skip = 0;
int add_offset = 0;
fp_dbg("write %d regs", num);
for (i = 0; i < num; i += add_offset + skip) {
int r, j;
int limit = MIN(num, i + MAX_REGWRITES_PER_REQUEST);
skip = 0;
for (j = i; j < limit; j++)
if (!regs[j].reg) {
skip = 1;
break;
}
add_offset = j - i;
r = do_write_regv(dev, &regs[i], add_offset);
if (r < 0)
return r;
}
return 0;
}
static int read_data(struct fp_img_dev *dev, unsigned char *data, size_t len)
{
int r;
fp_dbg("len=%zd", len);
r = usb_bulk_read(dev->udev, EP_IN, data, len, BULK_TIMEOUT);
if (r < 0) {
fp_err("bulk read error %d", r);
return r;
} else if (r < len) {
fp_err("unexpected short read %d/%zd", r, len);
return -EIO;
}
return 0;
}
static int read_regs(struct fp_img_dev *dev, unsigned char *data)
{
int r;
const struct aes2501_regwrite regwrite = {
AES2501_REG_CTRL2, AES2501_CTRL2_READ_REGS
};
fp_dbg("");
r = write_regv(dev, &regwrite, 1);
if (r < 0)
return r;
return read_data(dev, data, 126);
}
static const struct aes2501_regwrite init_1[] = {
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ 0, 0 },
{ 0xb0, 0x27 }, /* Reserved? */
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ 0xff, 0x00 }, /* Reserved? */
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_DETCTRL,
AES2501_DETCTRL_DRATE_CONTINUOUS | AES2501_DETCTRL_SDELAY_31_MS },
{ AES2501_REG_COLSCAN, AES2501_COLSCAN_SRATE_128_US },
{ AES2501_REG_MEASDRV,
AES2501_MEASDRV_MDRIVE_0_325 | AES2501_MEASDRV_MEASURE_SQUARE },
{ AES2501_REG_MEASFREQ, AES2501_MEASFREQ_2M },
{ AES2501_REG_DEMODPHASE1, DEMODPHASE_NONE },
{ AES2501_REG_DEMODPHASE2, DEMODPHASE_NONE },
{ AES2501_REG_CHANGAIN,
AES2501_CHANGAIN_STAGE2_4X | AES2501_CHANGAIN_STAGE1_16X },
{ AES2501_REG_ADREFHI, 0x44 },
{ AES2501_REG_ADREFLO, 0x34 },
{ AES2501_REG_STRTCOL, 0x16 },
{ AES2501_REG_ENDCOL, 0x16 },
{ AES2501_REG_DATFMT, AES2501_DATFMT_BIN_IMG | 0x08 },
{ AES2501_REG_TREG1, 0x70 },
{ 0xa2, 0x02 },
{ 0xa7, 0x00 },
{ AES2501_REG_TREGC, AES2501_TREGC_ENABLE },
{ AES2501_REG_TREGD, 0x1a },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
{ AES2501_REG_CTRL2, AES2501_CTRL2_SET_ONE_SHOT },
{ AES2501_REG_LPONT, AES2501_LPONT_MIN_VALUE },
};
static const struct aes2501_regwrite init_2[] = {
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_AUTOCALOFFSET, 0x41 },
{ AES2501_REG_EXCITCTRL, 0x42 },
{ AES2501_REG_DETCTRL, 0x53 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
};
static const struct aes2501_regwrite init_3[] = {
{ 0xff, 0x00 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_AUTOCALOFFSET, 0x41 },
{ AES2501_REG_EXCITCTRL, 0x42 },
{ AES2501_REG_DETCTRL, 0x53 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
};
static const struct aes2501_regwrite init_4[] = {
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ 0xb0, 0x27 },
{ AES2501_REG_ENDROW, 0x0a },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
{ AES2501_REG_DETCTRL, 0x45 },
{ AES2501_REG_AUTOCALOFFSET, 0x41 },
};
static const struct aes2501_regwrite init_5[] = {
{ 0xb0, 0x27 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ 0xff, 0x00 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_SCAN_RESET },
{ AES2501_REG_CTRL1, AES2501_CTRL1_SCAN_RESET },
};
static int do_init(struct fp_img_dev *dev)
{
unsigned char buffer[128];
int r;
int i;
/* part 1, probably not needed */
r = write_regv(dev, init_1, ARRAY_SIZE(init_1));
if (r < 0)
return r;
r = read_data(dev, buffer, 20);
if (r < 0)
return r;
/* part 2 */
r = write_regv(dev, init_2, ARRAY_SIZE(init_2));
if (r < 0)
return r;
r = read_regs(dev, buffer);
if (r < 0)
return r;
/* part 3 */
fp_dbg("reg 0xaf = %x", buffer[0x5f]);
i = 0;
while (buffer[0x5f] == 0x6b) {
r = write_regv(dev, init_3, ARRAY_SIZE(init_3));
if (r < 0)
return r;
r = read_regs(dev, buffer);
if (r < 0)
return r;
if (++i == 13)
break;
}
/* part 4 */
r = write_regv(dev, init_4, ARRAY_SIZE(init_4));
if (r < 0)
return r;
/* part 5 */
return write_regv(dev, init_5, ARRAY_SIZE(init_5));
}
static int dev_init(struct fp_img_dev *dev, unsigned long driver_data)
{
int r;
r = usb_claim_interface(dev->udev, 0);
if (r < 0) {
fp_err("could not claim interface 0");
return r;
}
/* FIXME check endpoints */
return do_init(dev);
}
static void dev_exit(struct fp_img_dev *dev)
{
usb_release_interface(dev->udev, 0);
}
static const struct aes2501_regwrite finger_det_reqs[] = {
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_DETCTRL,
AES2501_DETCTRL_DRATE_CONTINUOUS | AES2501_DETCTRL_SDELAY_31_MS },
{ AES2501_REG_COLSCAN, AES2501_COLSCAN_SRATE_128_US },
{ AES2501_REG_MEASDRV, AES2501_MEASDRV_MDRIVE_0_325 | AES2501_MEASDRV_MEASURE_SQUARE },
{ AES2501_REG_MEASFREQ, AES2501_MEASFREQ_2M },
{ AES2501_REG_DEMODPHASE1, DEMODPHASE_NONE },
{ AES2501_REG_DEMODPHASE2, DEMODPHASE_NONE },
{ AES2501_REG_CHANGAIN,
AES2501_CHANGAIN_STAGE2_4X | AES2501_CHANGAIN_STAGE1_16X },
{ AES2501_REG_ADREFHI, 0x44 },
{ AES2501_REG_ADREFLO, 0x34 },
{ AES2501_REG_STRTCOL, 0x16 },
{ AES2501_REG_ENDCOL, 0x16 },
{ AES2501_REG_DATFMT, AES2501_DATFMT_BIN_IMG | 0x08 },
{ AES2501_REG_TREG1, 0x70 },
{ 0xa2, 0x02 },
{ 0xa7, 0x00 },
{ AES2501_REG_TREGC, AES2501_TREGC_ENABLE },
{ AES2501_REG_TREGD, 0x1a },
{ 0, 0 },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
{ AES2501_REG_CTRL2, AES2501_CTRL2_SET_ONE_SHOT },
{ AES2501_REG_LPONT, AES2501_LPONT_MIN_VALUE },
};
static int detect_finger(struct fp_img_dev *dev)
{
unsigned char buffer[22];
int r;
int i;
int sum = 0;
r = write_regv(dev, finger_det_reqs, ARRAY_SIZE(finger_det_reqs));
if (r < 0)
return r;
r = read_data(dev, buffer, 20);
if (r < 0)
return r;
for (i = 1; i < 9; i++)
sum += (buffer[i] & 0xf) + (buffer[i] >> 4);
return sum > 20;
}
static int await_finger_on(struct fp_img_dev *dev)
{
int r;
do {
r = detect_finger(dev);
} while (r == 0);
return (r < 0) ? r : 0;
}
/* Read the value of a specific register from a register dump */
static int regval_from_dump(unsigned char *data, uint8_t target)
{
if (*data != FIRST_AES2501_REG) {
fp_err("not a register dump");
return -EILSEQ;
}
if (!(FIRST_AES2501_REG <= target && target <= LAST_AES2501_REG)) {
fp_err("out of range");
return -EINVAL;
}
target -= FIRST_AES2501_REG;
target *= 2;
return data[target + 1];
}
static int sum_histogram_values(unsigned char *data, uint8_t threshold)
{
int r = 0;
int i;
uint16_t *histogram = (uint16_t *)(data + 1);
if (*data != 0xde)
return -EILSEQ;
if (threshold > 0x0f)
return -EINVAL;
/* FIXME endianness */
for (i = threshold; i < 16; i++)
r += histogram[i];
return r;
}
/* find overlapping parts of frames */
static unsigned int find_overlap(unsigned char *first_frame,
unsigned char *second_frame, unsigned int *min_error)
{
unsigned int dy;
unsigned int not_overlapped_height = 0;
*min_error = 255 * FRAME_SIZE;
for (dy = 0; dy < FRAME_HEIGHT; dy++) {
/* Calculating difference (error) between parts of frames */
unsigned int i;
unsigned int error = 0;
for (i = 0; i < FRAME_WIDTH * (FRAME_HEIGHT - dy); i++) {
/* Using ? operator to avoid abs function */
error += first_frame[i] > second_frame[i] ?
(first_frame[i] - second_frame[i]) :
(second_frame[i] - first_frame[i]);
}
/* Normalize error */
error *= 15;
error /= i;
if (error < *min_error) {
*min_error = error;
not_overlapped_height = dy;
}
first_frame += FRAME_WIDTH;
}
return not_overlapped_height;
}
/* assemble a series of frames into a single image */
static unsigned int assemble(unsigned char *input, unsigned char *output,
int num_strips, gboolean reverse, unsigned int *errors_sum)
{
uint8_t *assembled = output;
int frame;
uint32_t image_height = FRAME_HEIGHT;
unsigned int min_error;
*errors_sum = 0;
if (num_strips < 1)
return 0;
/* Rotating given data by 90 degrees
* Taken from document describing aes2501 image format
* TODO: move reversing detection here */
if (reverse)
output += (num_strips - 1) * FRAME_SIZE;
for (frame = 0; frame < num_strips; frame++) {
int column;
for (column = 0; column < FRAME_WIDTH; column++) {
int row;
for (row = 0; row < (FRAME_HEIGHT / 2); row++) {
output[FRAME_WIDTH * ( 2 * row) + column] = *input & 0x0F;
output[FRAME_WIDTH * ( 2 * row + 1) + column] = *input >> 4;
input++;
}
}
if (reverse)
output -= FRAME_SIZE;
else
output += FRAME_SIZE;
}
/* Detecting where frames overlaped */
output = assembled;
for (frame = 1; frame < num_strips; frame++) {
int not_overlapped;
output += FRAME_SIZE;
not_overlapped = find_overlap(assembled, output, &min_error);
*errors_sum += min_error;
image_height += not_overlapped;
assembled += FRAME_WIDTH * not_overlapped;
memcpy(assembled, output, FRAME_SIZE);
}
return image_height;
}
static const struct aes2501_regwrite capture_reqs_1[] = {
{ AES2501_REG_CTRL1, AES2501_CTRL1_MASTER_RESET },
{ 0, 0 },
{ AES2501_REG_EXCITCTRL, 0x40 },
{ AES2501_REG_DETCTRL,
AES2501_DETCTRL_SDELAY_31_MS | AES2501_DETCTRL_DRATE_CONTINUOUS },
{ AES2501_REG_COLSCAN, AES2501_COLSCAN_SRATE_128_US },
{ AES2501_REG_DEMODPHASE2, 0x7c },
{ AES2501_REG_MEASDRV,
AES2501_MEASDRV_MEASURE_SQUARE | AES2501_MEASDRV_MDRIVE_0_325 },
{ AES2501_REG_DEMODPHASE1, 0x24 },
{ AES2501_REG_CHWORD1, 0x00 },
{ AES2501_REG_CHWORD2, 0x6c },
{ AES2501_REG_CHWORD3, 0x09 },
{ AES2501_REG_CHWORD4, 0x54 },
{ AES2501_REG_CHWORD5, 0x78 },
{ 0xa2, 0x02 },
{ 0xa7, 0x00 },
{ 0xb6, 0x26 },
{ 0xb7, 0x1a },
{ AES2501_REG_CTRL1, AES2501_CTRL1_REG_UPDATE },
{ AES2501_REG_IMAGCTRL,
AES2501_IMAGCTRL_TST_REG_ENABLE | AES2501_IMAGCTRL_HISTO_DATA_ENABLE |
AES2501_IMAGCTRL_IMG_DATA_DISABLE },
{ AES2501_REG_STRTCOL, 0x10 },
{ AES2501_REG_ENDCOL, 0x1f },
{ AES2501_REG_CHANGAIN,
AES2501_CHANGAIN_STAGE1_2X | AES2501_CHANGAIN_STAGE2_2X },
{ AES2501_REG_ADREFHI, 0x70 },
{ AES2501_REG_ADREFLO, 0x20 },
{ AES2501_REG_CTRL2, AES2501_CTRL2_SET_ONE_SHOT },
{ AES2501_REG_LPONT, AES2501_LPONT_MIN_VALUE },
};
static const struct aes2501_regwrite capture_reqs_2[] = {
{ AES2501_REG_IMAGCTRL,
AES2501_IMAGCTRL_TST_REG_ENABLE | AES2501_IMAGCTRL_HISTO_DATA_ENABLE |
AES2501_IMAGCTRL_IMG_DATA_DISABLE },
{ AES2501_REG_STRTCOL, 0x10 },
{ AES2501_REG_ENDCOL, 0x1f },
{ AES2501_REG_CHANGAIN, AES2501_CHANGAIN_STAGE1_16X },
{ AES2501_REG_ADREFHI, 0x70 },
{ AES2501_REG_ADREFLO, 0x20 },
{ AES2501_REG_CTRL2, AES2501_CTRL2_SET_ONE_SHOT },
};
static const struct aes2501_regwrite strip_scan_reqs[] = {
{ AES2501_REG_IMAGCTRL,
AES2501_IMAGCTRL_TST_REG_ENABLE | AES2501_IMAGCTRL_HISTO_DATA_ENABLE },
{ AES2501_REG_STRTCOL, 0x00 },
{ AES2501_REG_ENDCOL, 0x2f },
{ AES2501_REG_CHANGAIN, AES2501_CHANGAIN_STAGE1_16X },
{ AES2501_REG_ADREFHI, 0x5b },
{ AES2501_REG_ADREFLO, 0x20 },
{ AES2501_REG_CTRL2, AES2501_CTRL2_SET_ONE_SHOT },
};
static int capture(struct fp_img_dev *dev, gboolean unconditional,
struct fp_img **ret)
{
int r;
struct fp_img *img;
unsigned int nstrips;
unsigned int errors_sum, r_errors_sum;
unsigned char *cooked;
unsigned char *imgptr;
unsigned char buf[1705];
int sum;
int i;
/* FIXME can do better here in terms of buffer management? */
fp_dbg("");
r = write_regv(dev, capture_reqs_1, ARRAY_SIZE(capture_reqs_1));
if (r < 0)
return r;
r = read_data(dev, buf, 159);
if (r < 0)
return r;
r = write_regv(dev, capture_reqs_2, ARRAY_SIZE(capture_reqs_2));
if (r < 0)
return r;
r = read_data(dev, buf, 159);
if (r < 0)
return r;
/* FIXME: use histogram data above for gain calibration (0x8e xx) */
img = fpi_img_new((3 * MAX_FRAMES * FRAME_SIZE) / 2);
imgptr = img->data;
cooked = imgptr + (MAX_FRAMES * FRAME_SIZE) / 2;
for (nstrips = 0; nstrips < MAX_FRAMES; nstrips++) {
int threshold;
r = write_regv(dev, strip_scan_reqs, ARRAY_SIZE(strip_scan_reqs));
if (r < 0)
goto err;
r = read_data(dev, buf, 1705);
if (r < 0)
goto err;
memcpy(imgptr, buf + 1, 192*8);
imgptr += 192*8;
threshold = regval_from_dump((buf + 1 + 192*8 + 1 + 16*2 + 1 + 8),
AES2501_REG_DATFMT);
if (threshold < 0) {
r = threshold;
goto err;
}
sum = sum_histogram_values((buf + 1 + 192*8), threshold & 0x0f);
if (sum < 0) {
r = sum;
goto err;
}
fp_dbg("sum=%d", sum);
if (sum == 0)
break;
}
if (nstrips == MAX_FRAMES)
fp_warn("swiping finger too slow?");
img->flags = FP_IMG_COLORS_INVERTED;
img->height = assemble(img->data, cooked, nstrips, FALSE, &errors_sum);
img->height = assemble(img->data, cooked, nstrips, TRUE, &r_errors_sum);
if (r_errors_sum > errors_sum) {
img->height = assemble(img->data, cooked, nstrips, FALSE, &errors_sum);
img->flags |= FP_IMG_V_FLIPPED | FP_IMG_H_FLIPPED;
fp_dbg("normal scan direction");
} else {
fp_dbg("reversed scan direction");
}
for (i = 0; i < img->height * FRAME_WIDTH; i++)
img->data[i] = (cooked[i] << 4) | 0xf;
img = fpi_img_resize(img, img->height * FRAME_WIDTH);
*ret = img;
return 0;
err:
fp_img_free(img);
return r;
}
static const struct usb_id id_table[] = {
{ .vendor = 0x08ff, .product = 0x2580 },
{ 0, 0, 0, },
};
struct fp_img_driver aes2501_driver = {
.driver = {
.id = 4,
.name = FP_COMPONENT,
.full_name = "AuthenTec AES2501",
.id_table = id_table,
},
.flags = 0,
.img_height = -1,
.img_width = 192,
.init = dev_init,
.exit = dev_exit,
.await_finger_on = await_finger_on,
.capture = capture,
};